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Synopsis 

Three simplified models of polycondensation reactors are considered in which the condensation 
product is continuously removed by application of vacuum. Reversible polycondensation reactions 
of monomers violating the equal reactivity hypothesis have been simulated in these reactors. The 
effect of various rate and reactor design variables on the molecular weight distribution (MWD) and 
its moments is studied. It is observed that when the reverse reactions are rapid, the results are fairly 
sensitive to the level of vacuum applied and to the mass transfer resistance; whereas when the forward 
reactions predominate, results lie very close to earlier plots for the corresponding irreversible poly- 
merizations. These reactor variables then have relatively small influence on the MWD. Splitting 
of the MWD curves for odd and even values of n is observed under certain conditions, the effects 
being more pronounced in the presence of mass transfer than in its absence. 

Introduction 

Simulations of irreversible polycondensation reactions wherein the functional 
groups are equally rea~t ivel-~ have been carried out for batch rea~tors , l -~ ideal 
continuous-flow, stirred-tank reactors (HCSTR),6-8 and continuous-flow 
stirred-tank reactors with segregation (SCSTR).g In many practical polymer- 
izations, the equal reactivity hypothesis is violated, and examples of these have 
been compiled recently.2J0 Several kinetic schemes have been proposed by 
various workersl1-l6 modeling real polymerizations and these have been simu- 
lated for commonly used reactors, viz., batch reactors,11-16 HCSTRs17-19 and 
SCSTRsJO Unfortunately, all these studies assume irreversibility of the various 
condensation reactions, and so, at  best, these studies approximate the actual 
course of polycondensations in industry during the initial stages only. In 
practical situations, the polycondensation reactions are reversible, and usually 
a vacuum is applied to the reaction mass in order to drive the reactions in the 
forward direction to give high-molecular-weight products. 

Reversible polycondensations with equal reactivity of functional groups have 
been studied by Abraham21 and Mellichamp,22 and similar work on reversible 
polycondensations violating the equal reactivity hypothesis has been reported 
by Gupta et al.10,23 recently. In these studies it has been assumed that the 
condensation product is not removed during the polymerization. S e ~ o r , ~ ~  
Hoftyzer and Van Kre~elen:~ and Amon and Denson26 studied the progress of 
polymerization at  different locations of the reaction mass when a vacuum is 
applied to remove the condensation product. 

In the present paper, Secor’s work on reversible polycondensations obeying 
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the equal reactivity hypothesis, with the condensation product diffusing toward 
the vacuum side, is extended to the case of reversible polycondensations violating 
this hypothesis. Three types of reactor geometries commonly encountered in 
industrial practice are investigated. Based on results derived from this relatively 
fundamental study, one can draw qualitative conclusions for more complex 
polymerizations under similar reactor c o n d i t i o n ~ . ~ ~ - ~ l  

FORMULATION 

Reversible condensation polymerizations of the AB type bifunctional mole- 
cules can be represented in general as 

kp.mn 
P, + P, ---+P,+, + W m, n =1,2,. . . 

kP n.1 P1+P,-l -P,+W n = 2 , 3  ... 

p2 + Pn-2 

where P, represents a bifunctional molecule having m repeat units and W is the 
condensation product. In one of the kinetic schemes, it is assumed that the 
forward rate constant between a monomer and a monomer is different from that 
between any two other species12J7: 

kp,mn = 2(kp); m z n; m, n = 1,2,3, .  . . 

= 2(kp/2); m = n; m, n > 1 

where the factor of l/2 in paranthesis for m = n is required to prevent counting 
of molecular collisions twice,3 and the factor of 2 outside the parantheses is re- 
quired to account for the fact that either functional group A on P, can react with 
B on P, or B on P, can react with A on P,. In modeling the reverse rate con- 
stants, it has been assumed that the rate of reaction between W and a reacted 
-AB- group at the ends of P, is different from that between W and an -AB- 
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group in the “interior” of P,: 

kb,nl = 2kk 
&,2l = kb 

n = 3 , 4 ,  . . .  (3) I n i = 2 , 3 , .  . . - (for even n )  
2 kL,ni = 2kb; 

n - 1  
i = 2 , 3 ,  ...- (for odd n)  

2 
Again, a factor of 2 is required to account for the fact that there are two identical 
-AB- groups of P, i units away from either of its two ends. k11, k,,  kk, and 
k b  thus represent the functional group reactivities and are similar to the rate 
constants used by Flory.’ 

The above kinetic scheme (called Model I) is a good representation of actual 
polymerizations in some cases. For other systems, it represents one of two 
limiting extremes-the other limiting model (called Model 11) is presented in 
Ref. 23. One important advantage of this kinetic scheme is that it is probably 
the simplest theoretical model which brings out the major features of polymer- 
izations where the equal reactivity hypothesis is violated. 

In commercial polycondensation reactors, the reactions are driven in the 
forward direction by application of high vacuums. The condensation product 
W diffuses through the reaction mass to the surface at  which vacuum is applied 
and is continuously removed. In one common reactor (wiped-film type), poly- 
merization occurs in a thin film inside a cylindrical tank as shown in Figure l(a), 
and a vacuum is applied inside. Since the film is thin, the effect of curvature 
is small and the film may be modeled as shown in Figure l(b), where the cylin- 
drical reaction mass is replaced by an infinite slab of thickness L. 

A pool-type reactor is another possibility in which an inert gas is bubbled 
through, as in Figure l(c) (or the condensation product may itself vaporize, 
forming gas bubbles which move towards the surface). In general, the gas 
bubbles will be of all sizes and will be randomly distributed. However, a simple 
model of such a reactor would be to assume equal-sized, spherical gas bubbles 
distributed uniformly. One can then associate with each bubble of radius R1 

a hollow spherical shell of the reaction mass extending over R1 d r d R2 [Fig. l(d)] 
with the condensation product diffusing toward the hollow space, where its 
concentration is lower. A t  r = R2, the outer surface of this hollow sphere, con- 
ditions are symmetrical on either side. 

The third system is a pool of polymerizing material with an extremely rapid 
vaporization of W. In such situations, the reacting mass is nomore continuous 
but gets isolated into several small regions separated by the vaporized W, as 
shown in Figure l(e). A simple model of this situation would be to consider each 
reacting zone as a sphere of radius R2, with diffusion of W from its interior to the 
surface r = R2. 

In this study, these three idealized models of common polymerization reactors 
are considered, and molecular weight distributions (MWDs) are obtained using 
the kinetic scheme presented above, in which the equal reactivity hypothesis 
is violated. In the earlier work of Sec0r,2~ only the models shown in Figures l(b) 
and l(f)  were considered and the number-average chain length alone was ob- 
tained for the equal reactivity case. 
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Fig. 1. Three common types of reactors and their simplified models. 

Mass balance equations for the several models of the polymerization reactor 
shown in Figure 1, using the kinetic scheme given in eqs. (1)-(3), are written 
8 ~ 3 ~  

-- d[pzl - -2kP[P2][P] + kil[P1]2 + 2kh [P3][W] + 2kb [W] 2 [Pa] 
bt n=4 

- kk [P2l[Wl (b) 

- kb(n - 3) [Pn][W] n = 3 , 4 .  . . (c) 

- n-1 
+ k p  c c [ p m ~ ~ n - r n ]  - k~ [ P ~ I [ W I  - 2 (2kk + (n - 3)k;l [w][pn] (4) 

n=3 m = l  n=3 

where [ ] represent the molar concentration of any species, D, is the diffusivity 
of the condensation product, and [PI is the sum of the concentrations of the in- 
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dividual mers, PI, P2, . . . In eq. (4), { = x ,  X = 0 is to be used for the film [Fig. 
l(b)] and {= r ,  X = 2 for the solid [Fig. l(d)] and hollow [Fig. l(f)] sphere models 
of the reactor. The assumptions used in obtaining eq. (4) are similar to those 
used earlier by S e ~ o r ~ ~  and by Amon and 

Initial condition (pure monomer), t = 0: 
The following initial and boundary conditions are used: 

0 5 x 5 L (film) 1 R1 5 r I R2 (hollow sphere) 
0 5 r I R2 (solid sphere) 

(a) 

(i) [Pll = [PI = [PllO 
(ii) [Pz] = [P3] = . . . = [W] = 0 

Boundary condition, t > 0: 

(i) [W] = [W], at  x = L (film), r = Rz (solid sphere) or r = R1 (hollow sphere) 

awl (ii) - = 0 at x = 0 (film) 
dX 

or 

5(b) -- a[W1 - 0 at r = 0 (solid sphere) or r = R2 (hollow sphere) 
ar 

where [PI10 is the molar concentration of the pure monomer and [W], is the in- 
terfacial concentration of the condensation product at the surface where the 
vacuum is applied. [W], will be related to the partial pressure of W in the gas 
phase through some thermodynamic equilibrium relationship as, for example, 
Henry's law. The boundary condition, eq. (5b) (ii), is to account for the flux 
being zero at the metal wall in the case of the film or arises because of symmetry 
at r = 0 (solid sphere) or r = R2 (hollow sphere). 

The average value of the concentration of any species, for example Pi, is ob- 
tained by an appropriate spatial integration as 

1 L  
L o  

= -  J- [Pi] dx [Pilau (film) 

(solid sphere) (6) 

3 Rz - - ~ [Pi]+ dr (hollow sphere) 
R;-R! 

The number- and weight- average chain lengths are defined by 

m 

C n[Pnl 
1 

2 [pnl 
n = l  

with the polydispersity index p being the ratio of pw and pn. The spatial average 
number- and weight-average chain lengths and polydispersity index, En, ,Ew, and 
p ,  can be obtained from eq. (7) by using average concentrations in place of local 
values. 

The above equations are nondimensionalized using the following vari- 
a b l e ~ ~ ~ , ~ ~ :  

x = q p l l o t  
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9 -  

_---- ------- 
~ c- (25.25.1125)  

I 

0 2 4 6 8 1 0 1 2 1 4  
X 

Fig. 2. Plot ofFn vs. X for various rate parameters indicated as (Keq, R, R’) for a small solid sphere, 
& = 2 (-), large solid sphere, ,$* = 4 (- - -), and hollow sphere, ,$I = 2, t 2  = 2.52 (- - - -). 
Corresponding curves for no-mass transfer (- - -) and irreversible reactions (-*-*-*- ’) are also 
shown. Curve for irreversible case for R = 25 is almost identical to that for small solid sphere for 
Keq = 25, R = 25, R’ = 1/25, C,  = 0; C, is zero except where indicated otherwise. 

and are solved numerically. 
The finite difference technique33 is applied to these equations to obtain ex- 

pressions for the (dimensionless) concentration of any species at any location 
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I I I I I 

2 4 6 8 1 0  
X 

Fig. 3. ii,, vs. X for two sets of rate parameters for an infinite slab (2 = 2, C, = 0. Results for 
small solid sphere (- - -)  and large solid sphere (- - -) shown for comparison. 

at (dimensionless) time (k + 1) AX in terms of the various concentrations at time 
k ( A X ) .  L’ Hopital’s rule along with symmetry conditions are used to take care 
of the boundary condition in eq. (5b) (ii) for the film and solid sphere models, 
while for the hollow sphere the symmetry condition suffices. 

For assuring proper convergence of the numerical procedure, the coefficient 
of kCj (the value of C at the j t h  location and kth time interval) in the final 
equation for k+lCj must be either positive or zero. This gives 

Since the maximum value of (At)/E is unity, one can use the following relationship 
between the increments of X and t for convergence: 

= (2 + A)AX (10) 

The finite-difference equations so obtained were solved on a DEC 1090 computer 
to obtain the MWD and its moments as a function of time and location, for several 
values of the parameters R ,  Keg ,  R‘, [I, and 42. The spatial-average MWD and 
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TABLE I 
Spatial Variation of [W], p,, and p for the Small, Solid Sphere 

c, = 0 C,  = 0.05 
Location (25,25,1/25), X = 14.1, = 0.9374 (1, 1,25), X = l 0 , p  = 0.4038 

1 C U" 0 C UII P 
~~ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
Average 

0.0025 
0.0025 
0.0024 
0.0023 
0.0021 
0.0019 
0.0016 
0.0013 
0.0009 
0.0005 
0.0000 
0.0010 

15.8235 
15.8262 
15.8362 
15.844 
15.8606 
15.8824 
15.9095 
15.9417 
15.9788 
15.0208 
16.0675 
15.8695 

1.8688 
1.8688 
1.8690 
1.8692 
1.8695 
1.8699 
1.8704 
1.8711 
1.8718 
1.8726 
1.8735 
1.8709 

0.0520 
0.0520 
0.0519 
0.0518 
0.0516 
0.0514 
0.0511 
0.0508 
0.0505 
0.0503 
0.0500 
0.0507 

1.6521 
1.6526 
1.6538 
1.6560 
1.6591 
1.6632 
1.6680 
1.6735 
1.6794 
1.6857 
1.6919 
1.6772 

1.7319 
1.7329 
1.7349 
1.7385 
1.7438 
1.7507 
1.7592 
1.7691 
1.7803 
1.7925 
1.8055 
1.7771 

its moments were also computed at  different times. A typical run for one set 
of parameter values took approximately 130 min of computer time for X up to 
about 15. The value of A[ was chosen independently so as to give the number 
of grid points as 11, and the corresponding value of AX was computed using eq. 
(10). A halving of the value of A[ did not lead to any significant change in the 
computed results for equal values of X .  Another check on the program was to 
obtain 2; n 2, from the computed values of 2, at each location after every time 
interval. These matched with the theoretically expected value of unity to within 
0.01% in the longest run when X went to 15. It may be added that this has been 
found to be an extremely sensitive check on the computer program in our earlier 
s t ~ d i e s ~ ~ ~ ~ ~ , ~ ~ ~ ~ 8 ~ 3 ~ , 3 ~  on various polymerizations. Also, Flory's most probable 
distributions were obtained when C was put equal to zero at  all locations and 
times. These checks confirmed that the computer program was free of er- 
rors. 

Due to the reversible nature of the polymerization, the mass balance equation 
for any species P, contains the concentrations of the higher species Pn+i, i = 1, 
2 , .  . . . Because of this fact, these equations cannot be solved sequentially (along 
with an equation for [PI) as is usually done for irreversible polymerizations, and 
some cut-off in the number of equations to be solved simultaneously is necessary. 
The method used in this study started with a total of 50 equations for P, he., 
equations for PI, Pz, . . . P50), and the concentrations of all the higher oligomers 
were assumed to be zero. As soon as the dimensionless spatial average concen- 
tration of P50 increased to 10-lo, 10 more equations for P, were added to each 
location. In other words, how the equations for PI, Pz, . . . P60 were solved si- 
multaneously, with the concentrations of Pel, etc., being put equal to zero. This 
procedure of adding on 10 more equations to the computational scheme was re- 
peated every time the dimensionless average concentration of the last species 
went above 10-lO. Such a procedure has been found satisfactory in some of our 
previous simulations of reversible polycondensations but does not guarantee good 
results since there is at  least one system, viz., nylon 6,27,28 wherein an alternate 
procedure of adding on equations had to be used to obtain reasonable results, 
involving considerable man-machine interaction. 
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2 4 6 8 10 12 1 4 .  
X 

Fig. 4. 5 vs. X for the same systems as in Fig. 2. Notation same as in Fig. 2. 

RESULTS AND DISCUSSION 

Several simulations were carried out in order to study quantitatively the effects 
of various parameters on the MWD and its moments. The rate parameters were 
varied from the set of values Keg = 1, R = 1, R' = 25, wherein the reverse reactions 
are slightly favored due to R' being larger than unity, to the other extreme Keg 
= 25, R = 25, R' = 1/25, where the forward reactions dominate. The following 
reactor parameters were studied: two sizes of solid spheres, the small sphere 
having dimensionless radius t z  = 2 and the large sphere having & = 4, a hollow 
sphere having inner diameter [I = 2 and outer diameter & = 2.52 (so that it has 
the same mass and the same inner surface area as the small sphere), and an in- 
finite slab having [Z = 2 (so that it has the same thickness as the radius of the 
small sphere). The solid sphere having (2 = 2 corresponds physically to a sphere 
approximately 7.5 X to 0.28 cm in diameter if typical  value^^^^^^ of DW = 

cm2/s, k, = 150 to 0.1 cm3/mol-s, and [PI10 = 0.005 mol/cm3 are used. 
Similarly, the hollow sphere studied physically corresponds to spherical vapor 
bubbles of diameter 7.5 X cm (or 0.28 cm for k, = 0.1) with a center-to- 
center separation of about 18.9 X cm (0.71 cm). The surface concentration 
of the condensation product was assumed zero in most cases except one, where 
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2- 

'4 1 
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2 4 6 8 1 0  
X 

Fig. 5. vs. X for an infinite slab. Notation as in Fig. 3. 

the dimensionless value C, was taken as 0.05, corresponding to [W], of ap- 
proximately 0.00025 mol/cm3. Typical values for polyester r e a c t o r ~ ~ ~ . ~ '  lie be- 
tween these values at  about mol/cm3, corresponding to pressures of about 
1-10 Torr. 

Figures 2 and 3 show plots of the spatial average value of the number-average 
chain length ji,, vs. the dimensionless time X ,  for various conditions. A com- 
parison of the curves for any value of Keq,  R,  and R' with the corresponding 
dotted curves in Figure 2 shows that substantially higher values of CL, are obtained 
in all reactor geometries when the condensation product is removed continuously 
by application of a vacuum and the reactions thus driven in the forward direction. 
It is found (e.g., curves a and b, Fig. 2) that for the same surface concentration 
of W, the large solid sphere gives lower values of jin than the small sphere because 
the resistance to mass transfer is higher in the former and rates of diffusion of 
W are smaller. Similarly, from Figure 3, it is observed that a sphere which has 
relatively higher surface area gives larger ji,, than an infinite slab having the same 
thickness. The values of En for the hollow sphere (curves c and d in Fig. 2), 
however, which has the same surface-to-volume ratio as the small solid sphere 
but is much thinner and so offers lower resistance to mass transfer, are higher 
than for the solid sphere. This emphasizes that in polycondensation reactors, 
the total surface area available for mass transfer per unit mass of the polymerizing 
liquid as well as the geometry are both extremely important variables. 

These effects are less important when the rate parameters are such that the 
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Fig. 6. MWD for Keq = 1, R = 1, R' = 25, C, = 0, X = 8 for the small, solid sphere at the center, 
midpoint, and surface. 

reactions are almost irreversible, e.g., when Keq = 25, R = 25, R' = 1/25. The 
effect of varying the surface concentration of W (i.e., the degree of vacuum) is 
also seen to be relatively small when the reactions are almost irreversible (e and 
f, Fig. 2) but is significant when the reverse reactions are important (c and g, Fig. 
2). The influence of the rate parameters with other variables constant can be 
observed from the study of the results on the small solid sphere. The values of 
ji, are highest when the rate parameters favor the forward reaction (e, Fig. 2), 
e.g., for Keq = 25, R = 25, and R' = 1/25, and are lowest (c, Fig. 2) when Keq = 
1, R = 1, and R' = 25. Thus, it is observed that the effect of mass transfer is to 
shift the ji, vs. X curves from the reversible, no-mass transfer curves toward the 
corresponding curves for irreversible reactions characterized by the same R. The 
amount of this shift depends on the reactor geometry, surface concentration of 
W, and the rate parameters. 

It may be emphasized that K,, = R = R' = 1 represents the equal reactivity 
case (studied by earlier ~ o r k e r s ~ ~ , ~ ~ , ~ 6 )  for the same initial conditions as used 
in this work. The effect of the unequal reactivity of functional groups can thus 
be observed by comparing the other graphs with those marked(1, 1,l). 

Table I illustrates the spatial variation of [W], p,, and p at large values of X 
for two sets of conditions. Though the variation of [W] is appreciable, not too 
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Fig. 7. Average MWD for Keq = 1, R = 1, R' = 25, C, = 0 for the small solid sphere at various X. 
Weight fraction monomer for X = 2 is 0.3191. 

much variation is observed for j ln and p .  A similar observation of j ln  not varying 
appreciably with position was made by SecorZ4 for the equal reactivity case, 
starting from an equilibrium polymer. 

The spatial-average polydispersity index p is shown as a function of the di- 
mensionless time for the same conditions in Figures 4 and 5. The values of p are 
found to be much higher in the presence of mass transfer than in its absence. It 
is interesting to observe that for the case when the forward reactions are favored, 
jii is lower, though the average chain length p,, is higher than when the reverse 
reactions are important. The results are found to be relatively insensitive to 
the reactor geometry or the extent of vacuum applied, except for one case where 
Keq = 1, R = 1, and R' = 25. 

The MWDs at different locations and their spatial averages in the presence 
of mass transfer have been obtained for the first time here. Earlier studies were 
limited to obtaining p,, only, since they worked in terms of functional groups 
instead of with molecular species. The MWDs depend markedly on the location 
when the reverse reactions are important (Keq = R = 1, R' = 25), as shown in 
Figure 6 for the small sphere. It is observed that for this case, there are sub- 
stantial amounts of unreacted monomer in the inside region, though near the 
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Fig. 8. MWD for Kes = 25, R = 25, R’ = 1/25, C, = 0 for the small solid sphere for various X .  
Lower curve for any X is for odd values of n and upper curves for even n. Graphs corresponding 
to various locations are indistinguishable. 

surface, the characteristic hump is seen. The spatial average MWD for the same 
system is shown in Figure 7 for different values of X .  The characteristic shape 
of these curves at  X around 10 is due to the preponderance of unreacted monomer 
at the center of the sphere, and a hump seems to be just appearing at  higher times. 
When the forward reactions are rapid (Keq = R = 25, R’ = 1/25), there is very 
little difference between the MWDs at different locations, and the average 
MWDs are shown in Figure 8. It is observed, however, that the MWD curves 
split into two for such cases-one (lower) corresponding to odd values of n and 
one for even values. This split in the MWDs is characteristic of polymeriz.ations 
characterized by unequal reactivity of functional groups for R > 1. The sepa- 
ration between the odd- and even-n curves decreases as X increases. 

Figure 9 shows the spatial-average MWD for the small sphere in the presence 
of mass transfer when the average conversion of functional groups, p, is 0.8515 
(corresponding to X = 4.8). Corresponding results in the absence of mass 
transfer effects1° for about the same conversion of functional groups, 0.8519 
(corresponding to X = lo), are also shown for comparison. The split in the odd- 
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0”58 

0 20 60 
n 

Fig. 9. Average MWD for the small sphere, (25,25,1/25) C, = 0, X = 4.8 (solid lines). Results 
in the absence of mass transfer for the same functional group conversion shown by (- - -). Results 
for irreversible case with R = 25 are very close to  solid lines. 

and even-n curves is found to be higher in the presence of mass transfer, which 
takes the system toward irreversibility. 

The presence of mass transfer is thus observed to take the MWDs from the 
results obtained earlier in the absence of mass transferlo (sealed tube polymer- 
ization) toward the results for irreversible polymerizations for the same R .  
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